(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0) → s(0)
log(x) → logIter(x, 0)
logIter(x, y) → if(le(s(0), x), le(s(s(0)), x), quot(x, s(s(0))), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
log(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), quot(x, s(s(0'))), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
log(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), quot(x, s(s(0'))), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quot,
le,
inc,
logIterThey will be analysed ascendingly in the following order:
minus < quot
quot < logIter
le < logIter
inc < logIter
(6) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
The following defined symbols remain to be analysed:
minus, quot, le, inc, logIter
They will be analysed ascendingly in the following order:
minus < quot
quot < logIter
le < logIter
inc < logIter
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s:logZeroError3_0(
n5_0),
gen_0':s:logZeroError3_0(
n5_0)) →
gen_0':s:logZeroError3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
minus(gen_0':s:logZeroError3_0(0), gen_0':s:logZeroError3_0(0)) →RΩ(1)
gen_0':s:logZeroError3_0(0)
Induction Step:
minus(gen_0':s:logZeroError3_0(+(n5_0, 1)), gen_0':s:logZeroError3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) →IH
gen_0':s:logZeroError3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
The following defined symbols remain to be analysed:
quot, le, inc, logIter
They will be analysed ascendingly in the following order:
quot < logIter
le < logIter
inc < logIter
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(11) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
The following defined symbols remain to be analysed:
le, inc, logIter
They will be analysed ascendingly in the following order:
le < logIter
inc < logIter
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s:logZeroError3_0(
n408_0),
gen_0':s:logZeroError3_0(
n408_0)) →
true, rt ∈ Ω(1 + n408
0)
Induction Base:
le(gen_0':s:logZeroError3_0(0), gen_0':s:logZeroError3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s:logZeroError3_0(+(n408_0, 1)), gen_0':s:logZeroError3_0(+(n408_0, 1))) →RΩ(1)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) → true, rt ∈ Ω(1 + n4080)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
The following defined symbols remain to be analysed:
inc, logIter
They will be analysed ascendingly in the following order:
inc < logIter
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s:logZeroError3_0(
n775_0)) →
gen_0':s:logZeroError3_0(
+(
1,
n775_0)), rt ∈ Ω(1 + n775
0)
Induction Base:
inc(gen_0':s:logZeroError3_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_0':s:logZeroError3_0(+(n775_0, 1))) →RΩ(1)
s(inc(gen_0':s:logZeroError3_0(n775_0))) →IH
s(gen_0':s:logZeroError3_0(+(1, c776_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) → true, rt ∈ Ω(1 + n4080)
inc(gen_0':s:logZeroError3_0(n775_0)) → gen_0':s:logZeroError3_0(+(1, n775_0)), rt ∈ Ω(1 + n7750)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
The following defined symbols remain to be analysed:
logIter
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol logIter.
(19) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) → true, rt ∈ Ω(1 + n4080)
inc(gen_0':s:logZeroError3_0(n775_0)) → gen_0':s:logZeroError3_0(+(1, n775_0)), rt ∈ Ω(1 + n7750)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) → true, rt ∈ Ω(1 + n4080)
inc(gen_0':s:logZeroError3_0(n775_0)) → gen_0':s:logZeroError3_0(+(1, n775_0)), rt ∈ Ω(1 + n7750)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)
(25) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s:logZeroError3_0(n408_0), gen_0':s:logZeroError3_0(n408_0)) → true, rt ∈ Ω(1 + n4080)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
(27) BOUNDS(n^1, INF)
(28) Obligation:
Innermost TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
log(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
quot(
x,
s(
s(
0'))),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
Types:
minus :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
quot :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
log :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
gen_0':s:logZeroError3_0 :: Nat → 0':s:logZeroError
Lemmas:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:logZeroError3_0(0) ⇔ 0'
gen_0':s:logZeroError3_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s:logZeroError3_0(n5_0), gen_0':s:logZeroError3_0(n5_0)) → gen_0':s:logZeroError3_0(0), rt ∈ Ω(1 + n50)
(30) BOUNDS(n^1, INF)